Chromatin regulates DNA torsional energy via topoisomerase II-mediated relaxation of positive supercoils.
نویسندگان
چکیده
Eukaryotic topoisomerases I (topo I) and II (topo II) relax the positive (+) and negative (-) DNA torsional stress (TS) generated ahead and behind the transcription machinery. It is unknown how this DNA relaxation activity is regulated and whether (+) and (-)TS are reduced at similar rates. Here, we used yeast circular minichromosomes to conduct the first comparative analysis of topo I and topo II activities in relaxing chromatin under (+) and (-)TS. We observed that, while topo I relaxed (+) and (-)TS with similar efficiency, topo II was more proficient and relaxed (+)TS more quickly than (-)TS. Accordingly, we found that the relaxation rate of (+)TS by endogenous topoisomerases largely surpassed that of (-)TS. We propose a model of how distinct conformations of chromatin under (+) and (-)TS may produce this unbalanced relaxation of DNA. We postulate that, while quick relaxation of (+)TS may facilitate the progression of RNA and DNA polymerases, slow relaxation of (-)TS may serve to favor DNA unwinding and other structural transitions at specific regions often required for genomic transactions.
منابع مشابه
Transcription facilitated genome-wide recruitment of topoisomerase I and DNA gyrase
Movement of the transcription machinery along a template alters DNA topology resulting in the accumulation of supercoils in DNA. The positive supercoils generated ahead of transcribing RNA polymerase (RNAP) and the negative supercoils accumulating behind impose severe topological constraints impeding transcription process. Previous studies have implied the role of topoisomerases in the removal ...
متن کاملTryptophane-205 of human topoisomerase I is essential for camptothecin inhibition of negative but not positive supercoil removal
Positive supercoils are introduced in cellular DNA in front of and negative supercoils behind tracking polymerases. Since DNA purified from cells is normally under-wound, most studies addressing the relaxation activity of topoisomerase I have utilized negatively supercoiled plasmids. The present report compares the relaxation activity of human topoisomerase I variants on plasmids containing equ...
متن کاملTopoisomerase II is required for the production of long Pol II gene transcripts in yeast
The extent to which the DNA relaxation activities of eukaryotic topoisomerases (topo I and topo II) are redundant during gene transcription is unclear. Although both enzymes can often substitute for each other in vivo, studies in vitro had revealed that the DNA cross-inversion mechanism of topo II relaxes chromatin more efficiently than the DNA strand-rotation mechanism of topo I. Here, we show...
متن کاملIntramolecular synapsis of duplex DNA by vaccinia topoisomerase.
Complexes formed by vaccinia topoisomerase I on plasmid DNA were visualized by electron microscopy. The enzyme formed intramolecular loop structures in which non-contiguous DNA segments were synapsed within filamentous protein stems. At high enzyme concentrations the DNA appeared to be zipped up within the protein filaments such that the duplex was folded back on itself. Formation of loops and ...
متن کاملTopoisomerase II: a fitted mechanism for the chromatin landscape
The mechanism by which type-2A topoisomerases transport one DNA duplex through a transient double-strand break produced in another exhibits fascinating traits. One of them is the fine coupling between inter-domainal movements and ATP usage; another is their preference to transport DNA in particular directions. These capabilities have been inferred from in vitro studies but we ignore their signi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 33 13 شماره
صفحات -
تاریخ انتشار 2014